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ABSTRACT

This thesis sets forth a novel intelligent residential air-conditioning (A/C) system controller

that provides optimal thermal comfort and electricity cost trade-o�s for a household resident

based on four key aspects, namely (i) a resident's behavioral preferences, (ii) the structural

attributes of the house and the A/C system, (iii) a retail price signal, and (iv) the environmental

conditions. It also describes a computational platform that tests the e�ects of the aggregate

intelligent A/C load on the bulk power system. An interesting feedback loop is established

between the wholesale power market and the distribution system in that the wholesale energy

prices a�ect the aggregate intelligent A/C load that in turn a�ects the wholesale energy prices.
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CHAPTER 1. GENERAL INTRODUCTION

The U.S. electrical grid is the largest interconnected system on Earth [1]. The grid is ex-

pected to face a number of challenges in the future, and intelligent means of tackling them

will result in increased reliability and decreased costs. A Massachusetts Institute of Technology

(MIT) report [2] outlines some of the major challenges and opportunities that the grid is ex-

pected to face in the next decade. These include: inclusion of wind and solar power generation;

use of electric vehicles and small-scale distributed electric generation; meeting workforce needs;

e�cient use of new technologies to deliver high performance and reliability; and capability to

handle the increase in data communications within the grid. These concepts belong under the

umbrella of a relatively new concept, termed the �smart grid.� The smart grid as de�ned by the

DoE [3] refers to a broad class of technology and innovation that aims to integrate the power

system with computerized control and automation so as to increase its e�ciency, reliability and

resiliency.

One of the major functions of the smart grid is to make the grid more energy e�cient.

Energy e�ciency is the ability to reduce the energy usage to deliver the same products and

services. The following facts are obtained from [1]:

�If the grid were just 5% more e�cient, the energy savings would equate to per-

manently eliminating the fuel and greenhouse gas emissions from 53 million cars.

If every American household replaced just one incandescent bulb with a compact

�uorescent bulb, the country would conserve enough energy to light 3 million homes

and save more than $600 million annually.� [1, p. 7]

Broadly speaking, the energy e�ciency of the entire system can be improved by introducing

clean forms of power generation such as wind and solar power generation. They would also
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play an important role in reducing the carbon emissions in the future. Increased penetration

of distributed generation (DG) such as rooftop photovoltaic generation will serve to reduce the

net load in the distribution system while plug-in electic vehicles (PEVs) help in reducing carbon

emissions in the transportation sector and storing electrical energy. Conventional load in the

grid has remained passive and has to be met under all circumstances. One of the key features

of the smart grid is the improved communication between the consumers and the utilities that

gives the consumers incentives and �exibility to control their power. This control of load to

bene�t the power system is termed as demand side management (DSM).

DSM has been practiced since the 80's [4, 5, 6]. In [7], DSM is performed by minimizing the

end-user discomfort. [8] discusses the design of utility-consumer contracts for e�ective DSM.

DSM can also be used to provide various services to the power system such as regulation,

load shifting, load shaping and peak reduction [9]. [10], [11] and [12] show some of the recent

trends in DSM with respect to the smart grid. There are di�erent methods to control the

load in DSM [13]: direct load control and indirect load control. In direct control, the power

consumption of the consumers is controlled directly by the utility through a control signal. The

consumers are contracted by the utility in that their appliances (air conditioners, water heaters,

dishwashers, etc.) can be controlled independently by the utilities at any time. This gives less

�exibility to the consumer and it also requires high-speed communication infrastructure (e.g.,

signals from the utility to turn on or turn o� the consumer's appliance) to be present. In indirect

load control, the power consumption of consumers is controlled either manually by them or with

the help of an automatic controller. In this case, the consumer/automatic controller is presented

with a control (price) signal that incentivizes the consumer to take appropriate action. A very

common control signal is the price of electricity that the consumer is charged. It can also be

practically implemented at present as the price signal can be downloaded from the internet

by the consumer/automatic controller. In this thesis, the pricing signal is indirectly used to

control the load arising from residential consumers (air-conditioning system in particular). The

household residents are presented with a time-varying price signal one day in advance in an aim

to reduce their air-conditioning system electricity consumption in the present day. This gives

them an incentive to reduce their consumption during the peak price hours that reduces their



www.manaraa.com

3

cost of electricity consumption.

As it is important to reduce the electricity consumption through indirect load control, it is

equally important to investigate the e�ects of this load on the bulk power system. Currently,

the market rules and the players in the power system such as generating companies (GenCos)

and load serving entities (LSEs) do not deal with active retail load whose implications could

be many. Hence, the investigation of the impact of active load in the bulk power system also

forms one of the major aspects of this thesis.

1.1 Thesis Organization

This thesis' chapters correspond to one journal and one conference paper that I have co-

authored with myself as the lead author.

In Chapter 2, a novel residential air-conditioning (A/C) system controller is presented.

This controller is able to provide optimal tradeo�s between the thermal comfort achieved by

a resident and the cost he/she pays for his/her A/C usage by taking consumer preferences,

structural attributes of the house, retail price signal and environmental conditions into account.

An optimization problem is formulated to solve the given task in a resonable amount of time,

and simulation results are shown that indicate reduction in the cost of electricity consumption.

As mentioned above, it is desirable to investigate the e�ects of the price-responsive residential

air-conditioning load on the wholesale and retail power system. To accomplish this, Chapter 3

makes of use of a large distribution feeder that has hundreds of households with the intelligent

A/C controller described in Chapter 2. The retail load arising from this distribution feeder is

fed to the wholesale power system and the e�ects of this interaction is examined in some detail.

The main purpose of Chapter 3 is to develop a framework with which interesting experiments

integrating the retail and wholesale power system can be run.
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CHAPTER 2. INTELLIGENT RESIDENTIAL AIR-CONDITIONING

SYSTEM WITH SMART-GRID FUNCTIONALITY

A paper accepted to be published in the IEEE Transactions on Smart Grid

Auswin George Thomas, Pedram Jahangiri, Di Wu, Chengrui Cai,

Huan Zhao, Dionysios C. Aliprantis, and Leigh Tesfatsion

Abstract

This paper sets forth a novel intelligent residential air-conditioning (A/C) system controller

that has smart grid functionality. The quali�er �intelligent" means the A/C system has advanced

computational capabilities and uses an array of environmental and occupancy parameters in

order to provide optimal intertemporal comfort/cost trade-o�s for the resident, conditional on

anticipated retail energy prices. The term �smart-grid functionality" means that retail energy

prices can depend on wholesale energy prices. Simulation studies are used to demonstrate the

capabilities of the proposed A/C system controller.

Nomenclature

BRo Nominal BTU rating (BTU/h) of the A/C system (at 35◦ C).

COPo Nominal cooling coe�cient-of-performance (unit-free) for the A/C system (at

35◦ C).

Ca Heat capacity (BTU/°F) of the internal air mass.

Cm Heat capacity (BTU/°F) of the internal solid mass.

Cn A/C electricity cost ($) during period n.
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E(·) Expected value calculated using f(ν), the probability density function (pdf) for

ν.

en Electric energy consumption (kWh) of the A/C system during period n.

En(·) Expected value calculated using the marginal pdf for νn.

F Pro-rated �xed cost ($) that the load-serving entity (LSE) charges R for A/C

energy usage during each period n.

f(ν) Pdf for ν = [ν1, . . . ,νN ].

Gmax Maximum possible comfort level (Utils) achievable by house resident R during

each period n from the thermal condition of his house.

Gn Comfort (Utils) attained by R during period n from the thermal condition of his

house.

h1, h2 Parameters appearing in R's comfort function that weigh R's thermal discomfort

for the current and subsequent period, respectively.

I R's targeted income expenditure level ($).

K Conversion factor (3412.1 BTU ≈ 1 kWh).

k1n, k2n Lower and upper temperature bounds for R's comfort function in period n.

mi Fraction of heat �ow rate (unit-free) from internal heat �ux to the internal solid

mass.

ml Fraction of cooling load (unit-free) that indicates the latent cooling load inside

the house, i.e., the unwanted moisture that needs to be removed.

ms Fraction of heat �ow rate (unit-free) from solar radiation to the internal solid

mass.

N Number of successive time periods n comprising R's planning horizon, where

period n is de�ned as the time interval [(n− 1)∆t, n∆t), for some �xed time step

∆t.

Na, Nm Number of grid points corresponding to T an , T
m
n , respectively.

NBn Net bene�t (Utils) attained by R in period n (discounted to period 1).

p Vector of retail A/C energy prices for periods 1 through N , p = [p1, p2, . . . , pN ].

pn Retail price ($/kWh) that the load-serving entity (LSE) charges R for A/C energy
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usage during period n.

py Vector of m consumption good prices, py = [py1, p
y
2, . . . , p

y
m].

pyj Retail price paid by R per unit of good j.

Q̇n Heat �ow rate (BTU/h) from A/C system to inside air mass during period n.

Q̇an Heat �ow rate (BTU/h) from Q̇sn and Q̇in to inside air mass during period n.

Q̇in Heat �ow rate (BTU/h) from internal appliances and occupants during period n.

Q̇mn Heat �ow rate (BTU/h) from Q̇sn and Q̇in to inside solid mass during period n.

Q̇sn Heat �ow rate (BTU/h) from solar radiation during period n.

R The resident of the house.

rn Retail price-to-go sequence starting in period n, rn = [pn, pn+1, . . . , pN ].

TNB Total net bene�t (Utils) attained by R over the planning horizon (discounted to

period 1).

T an Internal air temperature (°F) at the beginning of period n.

T b R's bliss temperature, i.e., the inside air temperature (°F) at which R achieves

his maximum comfort level.

Tmn Internal mass temperature (°F) at the beginning of period n (i.e., the equivalent

temperature of the lumped solid mass).

T on Outside air temperature during period n (°F).

Ua Thermal conductance (BTU/h/°F) between internal and external air mass de�n-

ing the thermal envelope of the house.

Um Thermal conductance (BTU/h/°F) between the internal air mass and the solid

mass.

u Sequence of A/C status conditions, u = [u1, . . . , uN ].

un A/C system status (e.g., o� or on) in period n.

wn Vector of forcing terms in period n.

x Sequence of state vectors, x = [x1, . . . ,xN ].

xn State vector describing the condition of the house at the beginning of period n.

y Vector of consumption goods purchased by R during periods 1, . . . , N in addition

to A/C energy purchases, y = [y1, . . . , ym]T .
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Z(y) Bene�t obtained by R from consumption of y.

α Parameter (Utils/$) appearing in R's net bene�t function that measures the ben-

e�t to R of a dollar of income.

βn Discount factor for R's net bene�t in period n.

γ Parameter appearing in R's comfort function that in�uences the shape of this

function around a bliss temperature range.

ν Sequence of stochastic environmental conditions, ν = [ν1, . . . ,νN ].

νn Vector of stochastic (external and internal) environmental conditions during pe-

riod n.

ρon Outside relative humidity during period n.

2.1 Introduction

This study considers the design of a residential air-conditioning (A/C) system capable of

responding intelligently to price signals in order to achieve optimal inter-temporal comfort/cost

trade-o�s for a house resident. A key motivation for this study is a 2010 report by the United

States Federal Energy Regulatory Commission (FERC) on demand response and advanced

metering technology. This report concludes:

�The investments in devices, controls and software to implement demand response

remain one of the greatest barriers to increased penetration." [14, p. 56]

In line with this conclusion, the current paper carefully considers the complex interplay between

the comfort/cost preferences of a house resident and the structural conditions constraining his

A/C choices arising both from the physics of energy �ows and the engineering limitations of

A/C system implementations.

Previous research on comfort and energy management issues has largely focused on large

building environments with many occupants [15, 16, 17, 18]. As detailed in the 2009 survey

by Dounis and Caraiscos [19], these studies consider not only heating and cooling systems but

also other building design features such as window placements, window shading, mechanical

ventilation systems, and lighting systems. Occupant comfort in these studies is typically a
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complex multi-faceted concept encompassing thermal comfort, visual comfort, and indoor air

quality, in keeping with ASHRAE standards [20]. Various control methods are explored in these

studies, including fuzzy controllers [21], fuzzy adaptive controllers [17, 22], and neural network

controllers [23].

Nevertheless, in recent years the increasing interest in advanced metering infrastructure for

households has encouraged researchers to focus more carefully on the energy usage choices of

residential homeowners [24]. For example, Rogers et al. [25] study an interesting residential

demand model, although without consideration of price signals. Guttromson et al. [26] and

Chassin et al. [27] focus on the modeling of price-responsive residential demands constrained

by internal and external state conditions. The latter studies are anchored by an Olympic

Penninsula pilot project [28]. However, residential energy demands in these studies are modeled

by means of pre-speci�ed behavioral rules rather than as the solutions to residential optimization

problems. More recent research has set forth formulations of the residential A/C control problem

as an optimization problem. In this work the objective is to minimize some combination of

thermal discomfort and energy usage under varying electricity prices [29, 30, 31, 32, 33].

The current paper extends this prior work in three important directions. First, the A/C

control strategy is formulated as a stochastic dynamic program in a manner that permits the

controller to respond to both energy prices and randomly varying environmental conditions. We

demonstrate that the underlying optimization problem can be solved in a reasonable amount of

time using conventional computational resources by adopting a certainty equivalence approach,

using weather forecast information that is nowadays readily available over the Internet. More-

over, this is done in a way that is minimally disruptive to the A/C system hardware, which

is important for retro�tting existing residential A/C systems. Second, the thermal dynamics

for the house and the A/C system are represented by means of physics-based models that are

suitably realistic for residential A/C system control purposes (whereas previous work adopted

simpler models to describe the plant dynamics). Third, the objective function expressing com-

fort/cost trade-o�s for the household resident is rigorously motivated in terms of basic economic

principles.



www.manaraa.com

9

Section 2.2 sets out the stochastic optimal control problem in general terms: a residential

A/C system determines energy usages over an N -period planning horizon to achieve optimal

intertemporal comfort/cost trade-o�s for the house resident, conditional on anticipated energy

prices and on dynamically changing internal and external conditions. In this general formulation

it is assumed that reliable state equations are available for determining the change in the thermal

state of the resident's house from one period to the next as a function of the resident's A/C

energy usage level and environmental parameters. It is also assumed that the resident's comfort

level is determined in each period by the indoor thermal state of his house at the beginning and

end of the period.

Sections 2.3 and 2.4 then address what might be done in the more practically relevant case

in which the state equations for the resident's house must be approximated and the resident's

achievable comfort levels are constrained by the mechanical requirements of the resident's A/C

system. Illustrative �ndings from computer simulations demonstrating the capabilities of the

resulting A/C system controller are reported in Section 2.5. Concluding remarks are given

in Section 2.6. Appendix 2.7.1 provides technical details regarding the use of a Luenberger

observer to construct an estimate for mass temperature, and Appendix 2.7.2 provides additional

motivation for the modeling of the resident's comfort/cost trade-o�s.

2.2 General Stochastic Optimal Control Problem for a Residential A/C

System

2.2.1 Problem Formulation

For computational tractability, the planning horizon of the house resident is discretized into

time periods n = 1, . . . , N , and the continuous thermal dynamics of the house are correspond-

ingly discretized into the discrete-time motion of a state vector xn. However, the dimension and

content of the state vectors xn are not restricted. Consequently, the state equation formulation

in this section is generic and can be used to implement a wide variety of thermal models.1

1In Section 2.3, below, this generic formulation is concretely illustrated for a thermal model with two-
dimensional state vectors xn, where the two state components are internal air temperature T a

n and internal
solid mass temperature Tm

n .
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The state xn+1 is assumed to be determined as a function Sn (time-varying for generality)

of the previous state xn, the A/C status un, and a vector νn of environmental parameters, as

xn+1 = Sn(xn, un,νn) , n = 1, . . . , N , (2.1)

where the initial state at the beginning of period 1 is exogenously given as

x1 = x1 . (2.2)

The A/C status un in (2.1) is assumed to be restricted to a domain U . For example, U =

{−1, 0} could represent a bang-bang control domain corresponding to cooling and o�, whereas

U = [−1, 0] could represent a continuous control domain ranging from full cooling (−1) to o�

(0). Also, suppose the A/C heat �ow rate Q̇n is determined as a function

Q̇n = Q̇(un,νn) . (2.3)

Finally, assume the electric energy usage en of the A/C system can be expressed as a function

en = e(Q̇n,νn) ≡ ẽ(un,νn) . (2.4)

To model price-responsive demand for electricity, it is assumed that resident R has a retail

contract with a load-serving entity (LSE) under which he pays a price pn ($/kWh) for his A/C

energy usage en (kWh) plus a pro-rated �xed charge F ($) to cover costs such as equipment

purchases and connection fees.2 The total cost charged by the LSE to R during period n thus

takes the form

Cn = C(pn, en) = pnen + F . (2.5)

The sequence p = [p1, p2, . . . , pN ] of retail A/C energy prices is assumed to be communicated

by the LSE to R prior to the start of period 1. Although R has access to this price data, he does

not need to act on a continual basis. Rather, it is the intelligent A/C controller that assumes

2In the general problem formulation presented in this section, the manner in which the LSE sets the A/C
energy usage prices pn is not restricted; hence, in particular, these prices do not need to bear any particular
relationship to the prices paid by the LSE for its wholesale energy purchases. In reality, of course, an LSE that
contracts with retail consumers having intelligent A/C system controllers as modeled in the current study will
have to set its A/C energy usage prices in line with the prices it pays for energy at wholesale in order to remain
pro�table. For example, as illustrated below in Section 2.5, pn could be set equal to the day-ahead locational
marginal price (LMP) paid by the LSE at wholesale plus a �mark-up" to cover additional types of operational
costs.
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this responsibility. Note that the time step of the A/C system model does not have to be the

same as the time step of operations for the wholesale electric power market. For example, day-

ahead market LMPs are determined on an hourly basis in the United States whereas an A/C

system will typically run at a faster time rate. If hourly day-ahead market LMPs were to be

charged to R as retail energy prices, the vector p would consist of 24 equal-length sub-vectors

of constant-valued prices.

As in [25], the comfort level (Utils) attained by R in period n from the thermal condition

of his house is measured as a time-varying function of the state vectors at the beginning and

end of period n:

Gn = G(xn,xn+1, n) . (2.6)

As is standard in (power) economics, the comfort assessment (2.6) is assumed to be determined

independently of any cost considerations.

From the viewpoint of period 1, the net bene�t NBn attained by R in period n is given by

R's attained comfort level minus his energy purchase costs, weighted by a discount factor βn,

as follows:

NBn = βn[G(xn,xn+1, n)− αC(pn, ẽ(un,νn))] . (2.7)

The key parameter α (Utils/$) appearing in (2.7) measures the bene�t (utility) to R of an

additional dollar of income. It permits costs measured in dollars to be expressed in bene�t

units (Utils), so that comfort/cost trade-o�s can be calculated.

The precise sense in which α quanti�es the trade-o� between comfort satisfaction and energy

cost for R is explained in some detail in Appendix 2.7.2 of our paper. Speci�cally, it is shown

in Appendix 2.7.2 that α can be derived as the shadow price for R's budget constraint in a

more fully articulated constrained bene�t maximization problem: namely, the maximization of

R's bene�t from consumption of multiple goods/services (including thermal comfort) subject

to a budget constraint. Thus, α measures R's �marginal bene�t of income� at the optimization

point, i.e., the drop in the maximized value of R's bene�t that would result if R had one less

dollar of income to spend (e.g., due to a higher energy price). For simplicity, this section treats

a reduced form of this more comprehensive bene�t maximization problem in which R is in



www.manaraa.com

12

e�ect solving a �rst-order necessary condition for this more comprehensive problem, taking α

as given.3

The total net bene�t attained by R over the planning horizon from period 1 to period N ,

conditional on a given state sequence x, A/C status sequence u, environmental-term sequence

ν, and price sequence p is calculated as the discounted sum of period-by-period net bene�ts:

TNB(x,u,ν,p) = ΣN
n=1NBn . (2.8)

Let the expected value of (2.8), conditional on (2.1) through (2.7), be denoted by

E[TNB(x,u,ν,p)] =

∫
V
TNB(x,u,ν,p)f(ν)dν (2.9)

where V denotes the domain of possible environmental vectors ν that could be realized during

the planning horizon {1, . . . , N}, and f(ν) denotes the joint probability density function (PDF)

for ν.

Putting this all together, the stochastic optimal control problem to be solved at the beginning

of period 1 for determination of optimal A/C status choices u∗n ∈ U during periods n = 1, . . . , N

can be expressed as follows:

maxE[TNB(x,u,ν,p)] (2.10)

with respect to u = [u1, u2, . . . , uN ]T subject to (2.1) and (2.2).

2.2.2 Closed-Loop Dynamic Programming Solution

Stochastic dynamic programming can be used to solve the control problem (2.10) in closed-

loop form. That is, (2.10) can be solved in sequential form with the optimal A/C status

value u∗n(xn; rn) in each period n expressed as a function of the current state xn, conditional

on the price-to-go sequence rn = [pn, pn+1, . . . , pN ]T consisting of the given retail energy prices

from period n through the �nal planning period N . For any n satisfying 1 ≤ n ≤ N , let

Valn(xn; rn) denote the maximum expected total net bene�ts attainable by R starting from

3As a practical matter, a household resident could experiment with di�erent α values to �nd a value for this
trade-o� parameter that approximately re�ects his true marginal bene�t of income.
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any feasible state xn, conditional on rn. That is, let Valn(xn; rn) denote R's price-conditioned

period-n value function.4

From the developments in Section 2.2.1, we can de�ne

ValN (xN ; rN ) = max
uN

EN [NBN (xN , SN (xN , uN ,νN ), pN , ẽ(uN ,νN ))] (2.11)

where rN ≡ pN denotes the retail energy price for period N , and the expectation is taken with

respect to the randomly varying environmental conditions νN for period N , conditional on xN

and exogenously given factors (such as rN ). Note that the solution to (2.11) has the closed-loop

form u∗N = uN (xN ; rN ). It then follows, by de�nition, that resident R's value functions satisfy

the following recursive relationship:5 For n = 1, . . . , N − 1:

Valn(xn; rn) = max
un

En[NBn(xn, Sn(xn, un,νn), pn, ẽ(un,νn))

+ Valn+1(Sn(xn, un,νn); rn+1)] . (2.12)

where rn ≡ [pn, rn+1].

Consequently, in principle, resident R at the beginning of period 1 can derive a closed-loop

solution to his stochastic optimal control problem (2.10) as follows. He should �rst use (2.11)

and (2.12) to derive his value functions Valn(xn; rn), starting at period n = N and working

backward to period n = 1. As a by-product of these calculations, for each period n ≥ 1 the

resident will obtain the optimal A/C status choice u∗n(xn; rn) as a function of xn, conditional

on rn.

From the vantage point of the initial period, R does not yet know what state vectors xn will

be realized in subsequent periods due to the inherent uncertainty in the system. Nevertheless, he

will know xn at the beginning of each period n prior to his actual choice of an A/C status un.

The closed-loop solutions u∗n(xn; rn) are thus complete contingency plans determining what

A/C status choice should be optimally implemented at each future time, conditional on the

state and price conditions at that time. Clearly, however, the state domain would have to be

appropriately discretized to obtain a practically computable closed-loop solution. An example

of such a discretization is provided in Section 2.4.

4The exogenously given price-to-go sequences rn are explicitly included as conditioning factors in the optimal
control and value functions in order to emphasize the price-responsive nature of the A/C system controller.

5Equation (2.12) is a special case of Bellman's Principle of Optimality.
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2.3 Physics-Based Modeling of the A/C System

The A/C system is a conventional residential system, such as the ones that may be typi-

cally found in United States middle-class residences. These are conventional systems, with an

electrically powered central unit or a window/wall unit that cycles on and o� to maintain the

air temperature around a thermostat set point. This section provides explicit forms for the

abstractly represented thermal state equation (2.1) and energy equation (2.4), as foundations

for the proposed intelligent A/C system controller. The complexity of these forms arises be-

cause they are physically based. An important point here, however, is that house residents

employing the proposed controller do not need to be exposed to this complexity; an interface

can separate a resident from the internal workings of the controller. As will be clari�ed more

carefully in Section 2.4 below, all that a resident needs to be exposed to via this interface are

�knobs" permitting him to adjust to his satisfaction the settings for his thermal comfort function

parameters and his comfort/cost trade-o� parameter α.

The thermal dynamics for a house are represented by means of an Equivalent Thermal

Parameter (ETP) model [34, 35]. The ETP model supposes that the state of a house at time t

consists of the inside air and mass temperatures, T a and Tm, whose dynamics are de�ned by a

system of two �rst-order linear di�erential equations:

dT a

dt
=

1

Ca

[
(T o − T a)Ua + (Tm − T a)Um + Q̇+ Q̇a

]
(2.13)

dTm

dt
=

1

Cm

[
(T a − Tm)Um + Q̇m

]
. (2.14)

The parameters appearing above have been de�ned in the nomenclature; also

Q̇a = (1−ms)Q̇s + (1−mi)Q̇i (2.15)

Q̇m = msQ̇s +miQ̇i . (2.16)

For computational tractability, the above continuous-time system is transformed to a discrete-

time system of the form

xn+1 = Âxn + B̂wn (2.17)

under the assumption that all time-varying forcing terms are step functions that remain constant
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during each period n, with

wn =

[
T on Q̇sn Q̇in Q̇n

]T
. (2.18)

This discrete state equation is of the same form as (2.1). To see this, �rst note that the

A/C heat �ow rate Q̇n depends on the A/C status un (cooling or o�), which is represented by

the following indicator function:

un =


0 if A/C status = o�

−1 if A/C status = on

(2.19)

The A/C heat �ow rate Q̇n represented by (2.3) is de�ned as

Q̇n = Q̇(un,νn) =
BR(T on)

m(ρon)
un (2.20)

where the vector νn contains all stochastic time-varying terms,

νn =

[
T on Q̇sn Q̇in ρon

]T
. (2.21)

In particular, the state function Sn in (2.1) reduces to a time-invariant function S of (xn, un,νn)

that is linear in xn.

Finally, an explicit form for the energy consumption function (2.4) of the A/C is established

as

en = e(Q̇n,νn) = K
|Q̇n|

COP(νn)
m(ρon)∆t . (2.22)

Explicit numerical expressions for the functions that appear above are obtained from [35]:

BR(T on) = BRo (1.4892− 0.0052T on) (2.23)

COP(νn) =
COPo

−0.01364 + 0.01067T on
(2.24)

m(ρon) = 1.1 +
ml

1 + exp(4− 0.1ρon)
. (2.25)

2.4 Controller Implementation

This section explains the envisioned practical implementation of the proposed intelligent

A/C system controller, given the A/C system model described in Section 2.3. This controller
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Figure 2.1 Block-diagram schematic of the intelligent A/C system control.

consists of two main parts, namely, the software running the scheduling algorithm and the wall

control unit, as shown in Fig. 2.1.

Current residential A/C systems, whose logic is based on relatively simple thermostatic

control, could be readily retro�tted by just upgrading their wall control units with the proposed

intelligent unit (i.e., the A/C mechanical components would not need to be modi�ed). The

scheduling software could be programmed on the actual wall control unit; alternatively, in order

to reduce hardware cost, it could run on a remote server as a cloud computing application,

managed by an entity o�ering this service. The wall control unit also requires communications

capability, for example, a wireless connection to the house's broadband internet.

At the time of installation, the four thermal parameters of the ETP model, namely Ca,

Cm, Ua, and Um, would have to be programmed into the unit, since they are required for the

model-based optimization process. These, together with mi and ms, may be determined using

a standard spreadsheet-like calculation process based on the physical dimensions of the house

such as the number of stories, the number and orientation of windows and doors, the �oor area,

and the level of thermal insulation[36]. The installer also would need to enter the BR and COP

functions of the A/C unit.
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For R's thermal comfort function, we adopt the following simple representation loosely based

on the ANSI/ASHRAE 55-2010 standard [20] and similar to the one used in [25]:

Gn = G(xn,xn+1, n) = Gmax − h1f(xn,1, n)− h2f(xn+1,1, n+ 1) , (2.26)

where the function f is de�ned as

f(x, n) =



[x− (T b − k1n)]γ if x < T b − k1n

[x− (T b + k2n)]γ if x > T b + k2n

0 otherwise

(2.27)

The parameters h1, h2, k1n, and k2n are positive constants, whereas γ is a positive even integer.

An increase in γ increases the magnitude of the slope of the discomfort function f when moving

away from the bliss temperature range.6

This modeling of R's comfort function can be interpreted as follows. For periods n during

which the house resident R is at home, he can set k1n = k2n = 0, so that he attains his

maximum comfort level when the air temperature (the �rst element of xn) is maintained at his

bliss temperature. When the resident is not at home, nonzero values for k1n and k2n can be set,

so that the same comfort level is attained within a range of temperatures, T b−k1n and T b+k2n.

In other words, the resident, while absent, is indi�erent to the actual temperature inside the

house, as long as it stays within the pre-speci�ed range (for instance, to protect pets, foodstu�,

or medicinal supplies). It should be noted that R could also decide to have nonzero k1n and

k2n set-points even while at home, if this is his preference. The choice of constant representing

the maximum comfort level attained (Gmax) is not of any practical signi�cance, since it does

not a�ect the result of the optimization. Its numerical value can be selected so that R's total

net bene�t has a positive value, measured in Utils, although this is not critical.

The resident R could program his comfort and cost preferences either directly on the wall

control unit or (more realistically) via a user-friendly graphical user interface, which could run

6The thermal comfort parameters h1, h2, and γ could be modeled as time varying without any technical
di�culty. However, R's thermal comfort function (2.26) is meant to measure the true comfort (bene�t) that R
attains from the thermal state of his house under di�erent thermal and occupancy conditions, independently
of cost considerations. A change in the values of these parameters over time would therefore have to re�ect
some type of time variation in R's basic preferences for thermal comfort. This does not seem reasonable for the
relatively short planning interval (one or two days) that we have in mind for the problem formulation.
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on R's personal computer, smart phone, or some other mobile computing device. The latter

would allow R to program the device without directly entering numerical values; these would be

determined internally by the software. The parameters re�ecting R's preferences are communi-

cated to the scheduling program. Whenever R decides to modify his bliss temperature or some

other parameter, the updated parameter set would be re-sent, and the optimal scheduling would

have to be recomputed. The scheduling algorithm also needs the day-ahead price sequence p

and a forecast of future environmental conditions included in vector ν. In particular, it is quite

challenging to obtain an accurate forecast of the internal heat �ow rate Q̇in, which arises from

various sources such as people, lights, and electrical appliances. Therefore, a typical variation

of this term must be assumed, for example, using the recommendations of [37]. Nevertheless, R

might be willing to provide some additional information, such as the number of occupants and

relevant details of their daily occupancy schedule, or whether visitors are expected on a certain

date/time, which would help improve the scheduling.

Proper discretization of the state vector xn is necessary for computational tractability when

solving the scheduling problem. The internal air temperature is assumed to vary in the range

[T b−24, T b+24]. To obtain reasonable accuracy, the range is discretized using Na = 481 points,

yielding an accuracy of 0.1 °F. The internal mass temperature is discretized with Nm points.

Generally, the di�erence between T an and Tmn will be small. Herein, it is assumed that Tmn lies

in [T an − 4.8, T an + 4.8], and that Nm = 481, yielding an accuracy of 0.02 °F for the di�erence

(T an − Tmn ). A grid has thus been formed containing all allowable combinations of (T an , T
m
n ).

When applying equation (2.17) during the dynamic programming algorithm, the states obtained

are not guaranteed to lie on the grid, so they are moved to their nearest grid point, as illustrated

in Fig. 2.2. This prevents the gradual increase of the grid size as dynamic programming proceeds

backwards in time. Equations (2.11) and (2.12) are then used to develop the control map for

the entire planning horizon. The control map is an (NaNm) × N matrix containing zeros

or ones, where each element represents an on-or-o� solution of (2.12). For instance, in this

implementation, the computer memory required to store this map in binary format (using one

bit for each element) is approximately 40 MB, or as low as 2 MB if sparse-matrix storage

techniques are used. The dynamic programming algorithm was programmed in Matlab, and
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Figure 2.2 Discretization of the state vector xn.

takes ca. 40 seconds to run on an Intel Core 2 Duo CPU E8400 3-GHz processor with 4 GB of

RAM.

It should be noted that the internal mass temperature Tmn cannot be obtained by direct

measurement. However, as demonstrated in Appendix 2.7.1, a Luenberger observer can be

designed to estimate it using measurements of the environmental variables (and reasonable

assumptions for the internal heat �ow rate). These measurements could be obtained by actual

temperature, solar irradiation, and humidity sensors installed at the house, or indirectly from

weather monitoring websites.

2.5 Simulation Results

This section reports simulation �ndings for the proposed intelligent A/C system controller.

These simulation �ndings indicate that the controller works as expected to provide a �exible way

for a house resident to optimally trade o� thermal comfort against costs over time, conditional

on his preferences for comfort, his anticipated occupancy times, and his A/C energy usage costs.

As discussed in Section 2.2.1 and Appendix 2.7.2, the α parameter appearing in resident

R's net bene�t function (2.7) is an attribute of R re�ecting his marginal bene�t of income,

not a control variable. Previous studies have not paid attention to the key role played by
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this attribute parameter in the determination of optimal comfort/cost trade-o�s for household

residents. Consequently, the simulations reported in this section explore outcomes for a range

of possible α values for R.

Other parameter values are set as follows. The thermal comfort parameter values for R are

set at Gmax = 1.5 Utils, h1 = h2 = 0.04 Utils/(°F)2, γ = 2, and T b = 74 °F. The thermal

model parameter values for R's house are set at Ca = 794.5 BTU/°F, Cm = 4726.4 BTU/°F,

Ua = 444.3 BTU/h/°F, Um = 7501 BTU/h/°F, ms = mi = 0.5, BRo = 42000 BTU/h,

COPo = 3.8, and ml = 0.3. These were obtained for a hypothetical 1500 ft2 single-story house

with very good insulation.

Meteorological data are obtained from the typical meteorological year (TMY2) database [38],

which contains records of a typical year for most of the regions in the United States. A relatively

hot day is simulated based on the data corresponding to June 14th, 2009 in Detroit, Michigan.

The data are smoothed to represent actual weather conditions and an o�set is added to the

temperature data. The day-ahead scheduling is carried out based on the outside temperature

and relative humidity of the modi�ed data as the forecast.

For the simulation of the A/C system, arti�cial conditions are synthesized based on the

modi�ed TMY2 data. To this end, a small perturbation is superimposed on the modi�ed data

to simulate actual (di�erent than forecasted) conditions. The solar radiation incident on the

house is a function of the direct normal radiation and the di�use horizontal radiation. The

solar heat gain factor [35] is then used to calculate the heat �ow rate from the solar radiation.

Radiation data are obtained from the TMY2 �le; however, since these are provided on an hourly

time-scale, other higher-frequency recorded data from NREL [39] are used to simulate cloud

movement in a more realistic fashion.

A crudely predetermined schedule of appliances (based on the design value of internal heat

�ow rate [35]) is used to construct the internal heat �ow rate for the day-ahead scheduling.

A �ner variation of appliances and occupant activity is assumed to occur in the simulation.

The variation of all environmental parameters used for day-ahead scheduling and in simulations

is depicted in Fig. 2.3. For scheduling, the variables are represented by piecewise constant

functions, changing every hour.
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Figure 2.3 Variation of environmental parameters for day-ahead scheduling and simulation.

The retail price corresponding to the chosen region (Detroit, MI) is the day-ahead LMP

obtained from an historical LMP report [40] for the Midwest ISO. The price pn in (2.5) includes

the LMP plus a mark-up of 5 cents/kWh, whereas F = 0. The retail price variation is shown

in Fig. 2.4.

Simulations are run using a 2-day planning horizon, where each period ∆t is 2 minutes long

(implying N = 1440). The discount factors βn in (2.7) are speci�ed to be 1.0 for the �rst day

of the planning horizon and 0.9 for the second day of the planning horizon.

The general A/C controller set out in Section 2.2.1 postulates the existence of a joint PDF
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Figure 2.4 Retail price variation.

for the environmental variables over the planning horizon. Nevertheless, for implementation

purposes, it would generally be very di�cult to obtain or estimate such a joint PDF. Here

we make use of a �certainty equivalence� approach to derive an approximate solution for the

optimal on/o� A/C controls. This approach replaces the random environmental variables over

the planning horizon by their expected values, reducing the problem to a deterministic dynamic

programming problem. Since the application at hand involves only a short two-day planning

horizon, the approximate solution should be reasonably close to the optimal solution.

A few simpli�cations are introduced to ease the presentation of results. First, because day-

ahead LMPs cannot be known with certainty two days in advance, it is assumed that the price

sequence for the second day of the planning horizon is forecasted to be the same as for the �rst

day. Second, although a new optimization takes place at the end of each day for a two-day

planning horizon, optimization outcomes are only shown for the �rst 24 hours of each two-day

planning horizon.

Finally, it should be noted that the two-day rolling-horizon optimization implemented for the

application at hand to generate updates to the A/C control map could instead be undertaken

at shorter intervals (e.g., hourly). A shorter rolling-horizon speci�cation would presumably

permit a greater forecast accuracy for the environmental variables and improved comfort/cost

optimization outcomes, but at the cost of increased computational time.
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Table 2.1 Results with k1n = k2n = 0

24-hour 24-hour 24-hour 24-hour

α Electricity Thermal Net Bene�t Energy

Cost ($) Comfort (Utils) (Utils) (kWh)

N/A 2.14 1078.8 N/A 27.3

0 2.14 1072.4 1072.4 27.4

50 2.13 1070.7 964.1 27.3

200 2.11 1064.3 641.8 27.0

500 2.09 1052.7 9.7 26.7

1000 2.04 1016.3 -1026.6 26.2

2000 1.88 862.7 -2888.8 24.1

3000 1.77 675.0 -4624.6 22.7

4000 1.70 429.7 -6374.5 22.0

2.5.1 Resident Stays at Home Throughout the Day

As a �rst case study, the resident is assumed to remain at home throughout the day, main-

taining a constant bliss temperature, and k1n = k2n = 0. For comparison purposes, a simulation

was �rst run over a 24-hour horizon using a classical A/C thermostat operating with simple hys-

teresis control, with a deadband of ±0.25 °F. The thermal comfort obtained was 1078.8 Utils.

(The ideal daily thermal comfort is (N/2)Gmax = 1080 Utils.) The energy consumption of the

A/C system was 27.3 kWh and the electricity cost was $2.14. These results are listed as the

�rst row of Table 2.1 for the reader's convenience.

Fig. 2.5 shows the variation of the indoor air temperature inside R's house for a range of α

values. It is obvious that, as α is increased, the deviations of T an from T b become increasingly

prominent. Table 2.1 summarizes the results. As expected, an increase in α results in increased

electric energy savings but lower thermal comfort.

2.5.2 Resident Leaves Home During the Day

For the second case study, the resident is assumed to leave the house from 8 am to 5 pm.

During this time, k1n and k2n are set to 15 °F. The simulation results shown in Fig. 2.6 exhibit

a markedly di�erent pattern from the previous case study. Most notably, the A/C controller
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Figure 2.5 Variation of internal air temperature (T an ) with α.

makes a decision to switch o� during the morning hours. For the extreme case of α = 0, this

switch occurs as soon as the resident leaves home. However, as α is increased, the A/C turns o�

earlier than that. It is also interesting to observe how the controller decides to cool down the

house in anticipation of the resident's arrival at home at 5 p.m., and how this decision varies

with di�erent α values.

Table 2.2 summarizes the results, which follow a similar trend as for the previous experiment.

Comparing Tables 2.1 and 2.2, we �nd that the cost of electricity and the energy consumption

have decreased considerably. This is because the A/C is mostly turned o� during the time R is
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Figure 2.6 Variation of internal air temperature (T an ) with α and k1n = k2n = 15 °F while the

resident is not at home.

not at home.

2.6 Conclusion

The purpose of this paper is to present the control of an A/C system by stochastic dynamic

programming (SDP) to achieve optimal intertemporal trade-o�s between thermal comfort and

A/C energy costs for a household resident conditional on retail A/C energy prices and environ-

mental conditions. A thermal comfort model is used to capture the thermal preferences of the

resident.
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Table 2.2 Results with Nonzero k1n, k2n

24-hour 24-hour 24-hour 24-hour

α Electricity Thermal Net Bene�t Energy

Cost ($) Comfort (Utils) (Utils) (kWh)

0 2.09 1075.2 1075.2 26.4

50 2.05 1073.1 970.8 25.8

200 2.02 1067.6 664.3 25.4

500 1.96 1055.9 73.6 24.7

1000 1.88 990.6 -891.6 23.7

2000 1.71 826.1 -2594.8 21.4

3000 1.60 582.8 -4214.3 20.1

4000 1.49 287.9 -5670.8 18.5

The critical parameter α appearing in the household resident's net bene�t function (2.7)

plays a key role in the determination of the resident's optimal comfort/cost trade-o�s. As de-

tailed in Appendix 2.7.2, α re�ects an attribute of the household resident�namely, his marginal

bene�t of income�that depends on his preferences and on his opportunities for the purchase

of alternative goods; α is not a �control variable.� As seen in Section 2.5, we envision our A/C

controller as having an α �knob� that each household resident can �ne tune to match his own

particular preferences and choice environment. In Section 2.5 we provide numerical examples

to show how di�erent settings for this alpha �knob� for di�erent residents would a�ect the A/C

energy usages resulting from the optimal on-o� A/C control settings generated by the A/C

controller, all else equal.

In a possible future smart-grid scenario, dynamically varying price signals can be communi-

cated to households, thereby achieving active demand response. Our thermal comfort model can

form a basis for studying the aggregation of price-sensitive demand emanating from a residential

area, since A/C systems constitute a substantial component of residential energy consumption

during the summer. The methodology can also be adopted by LSEs to forecast price-sensitive

load from their retail customers. Furthermore, there is an interesting feedback loop connect-

ing wholesale load to wholesale prices to retail prices to retail load and back up to wholesale

load. In fact, this feedback loop is currently being explored by means of systematic simulation
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studies [41].

As stressed in Section 2.2, our study is agnostic regarding the exact method by which the

LSE servicing the A/C energy needs of retail consumers determines the A/C energy prices.

Clearly, however, the ability to o�er retail energy contracts under which the prices charged vary

dynamically with changing conditions could open up strategic opportunities for pro�t-seeking

LSEs. This important topic is part of our ongoing research.

The general discrete-time SDP problem set out in Section 2.2 for the household resident does

not assume a �nite domain either for the control actions un or for the state vectors xn. For

practical application, however, �nite discretizations are introduced in Section 2.3 for the control

and state domains that render our SDP formulation equivalent to a �nite-horizon discrete-time

Markov Decision Process (MDP). In future studies it would be of interest to compare and

contrast our SDP solution approach to approaches that have been introduced in the literature

for the approximate solution of MDP problems.

It is also of great interest to design a similar controller for inverter-based systems, which

are rapidly gaining market share worldwide, because they o�er increased e�ciency and energy

savings (albeit with increased capital cost). However, this is not the case in the United States,

where most residential A/C systems are still commonly based on simple on/o� control. There-

fore, one important advantage of our simple �bang-bang� proposed control is that it lends itself

to the retro�tting of existing systems (at least in the USA) with minimal intervention required

on the mechanical A/C components. Nevertheless, the general mathematical formulation out-

lined in Section 2.2 certainly permits the formulation of a continuous problem, which would be

appropriate for an inverter-based A/C system. This is an important topic for future work.

The general formulation (2.6) for the household resident's thermal comfort function set out

in Section 2.2 permits thermal comfort to depend on the initial and �nal state vectors during

period n as well as directly on n. For concrete illustration, however, Section 2.4 uses a simpli�ed

thermal comfort function (2.26) that depends only on the initial and �nal air temperature of the

resident's house for any period n as well as on period-speci�c lower and upper bounds for the

resident's comfort function re�ecting whether the resident is actually at home during period n.

In future studies it would be of great interest to explore more carefully the implications of
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alternative thermal comfort function speci�cations for the welfare of household residents and

for system performance more generally. Moreover, it would be important to re�ne further the

physical model of the A/C system, in order to study the impact of improved modeling on the

optimization results.

Finally, in future work we intend to implement the proposed intelligent A/C system con-

troller in practice, and to conduct experiments to test its performance. The current study

provides the theoretical underpinnings for this experimental validation.

2.7 Appendix

2.7.1 Luenberger Observer to Estimate the Internal Mass Temperature

The ETP model (2.13)�(2.14) can be written as Ṫ a
Ṫm

 =

A11 A12

A21 A22


T a
Tm

+

bT1

bT2

w (2.28)

where A11, A12, A21 and A22 are the scalar elements of the matrix A, and bT1 and bT2 are the

two rows of the matrix B. An estimate for the mass temperature can be constructed as

˙̂
Tm = (A22 − K̃A12)T̂

m +A21T
a + bT2 w + K̃(Ṫ a −A11T

a − bT1 w) . (2.29)

The gain K̃ is chosen such that A22 − K̃A12 < 0, in which case it can be shown that the error

Tm − T̂m asymptotically approaches zero as t → ∞ [42]. However, this estimator requires

knowledge of Ṫ a, which is unknown. To eliminate Ṫ a, we let z ≡ T̂m − K̃T a, and (2.29) leads

to a modi�ed estimator in terms of z, given by

ż = (A22 − K̃A12)z + [(A22 − K̃A12)K̃ +A21 − K̃A11]T
a + (bT2 − K̃bT1 )w . (2.30)

The mass temperature is estimated from T̂m = z + K̃T a. This observer logic could be readily

programmed in the wall unit, in discrete-time form. For the simulation studies of Section 2.5,

the gain was set to K̃ = −7.
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2.7.2 Extended Motivation for the Comfort/Cost Trade-o� Model

Here we present additional motivation for the form of resident R's comfort/cost trade-o�

problem (2.10) set out in Section 2.2.1. In particular, we show that, for an appropriate choice

of α, the solution of this problem can be viewed as a necessary condition for the solution of

a more comprehensive problem involving the budget-constrained maximization of the bene�t

attained by R over periods 1, . . . , N from the consumption of multiple goods in addition to

thermal comfort.

As is standard in microeconomic treatments of multi-good optimization problems, suppose

the multi-good bene�t obtained by R over periods 1, . . . , N is given by the function

W (u,y) =
N∑
n=1

βnG(xn, Sn(xn, un,νn), n) + Z(y) , (2.31)

where the state vectors xn satisfy the state equations (2.1) and (2.2), and the dependence

of W on the exogenously given terms ν and x̄1 has been supressed from the notation. As

in Section 2.2.1, the summation term measures the bene�t (comfort) attained by R from the

thermal conditions inside his house during periods 1, . . . , N . Now, however, there is also a

second term, Z(y), measuring the bene�t (satisfaction) attained by R from the consumption

of a vector y = [y1, . . . , ym]T of m additional types of goods during periods 1, . . . , N . Assume

that R strictly prefers more of each of these goods to less, all else equal, implying that Z(y) is

a strictly increasing function of yj for each j = 1, . . . ,m.

Let py = [py1, . . . , p
y
m], where pyj denotes the dollar amount paid by R per unit of consumption

of good j. Also, assume that the A/C electric energy prices p = [p1, . . . , pN ], the goods prices py,

and the environmental conditions ν = [ν1, . . . ,νN ] are known by R prior to the start of period

1. Let I ($) denote R's target total income expenditure level for periods 1, . . . , N , and let

u = [u1, . . . , uN ] and y denote the choice vectors for R.

Now consider the following optimization problem for R involving the maximization of his

multi-good bene�t function (2.31) subject to a budget constraint:7

maxW (u,y) (2.32)

7For expositional simplicity, the restriction of un to some admissible domain U and the restriction of y to the
nonnegative orthant in Euclidean m-space are ignored below. Also, the assumed nonsatiation of R with respect
to consumption of y guarantees that R will satisfy his budget constraint as a strict equality.
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with respect to choice of u and y, subject to

N∑
n=1

βnC(pn, ẽn(un,νn)) + py · y = I . (2.33)

Let α denote the Lagrange multiplier corresponding to the budget constraint (2.33), and form

the Lagrangian function L as follows:

L(u,y, α, I) = W (u,y) + α

[
I −

N∑
n=1

βnC(pn, ẽn(un,νn))− py · y

]
(2.34)

Suppose the usual Karush-Kuhn-Tucker (KKT) �rst-order necessary conditions expressed in

terms of the Lagrangian function L result in unique solutions (u∗,y∗, α∗) for u, y, and α. Let

these solutions be expressed in the form

(u∗,y∗, α∗) = (u(I),y(I), α(I)) , (2.35)

where dependence on all exogenous variables except income I has been suppressed from the

notation. Given certain regularity conditions, it follows by the envelope theorem8 that α(I)

measures R's marginal bene�t of income9 in the sense that

α(I) =
dW (u(I),y(I))

dI
. (2.36)

That is, α(I) measures the change in R's optimized multi-good bene�ts with respect to a change

in his income I, evaluated at the solution point.

Finally, here is the interesting observation that motivates this appendix discussion. If α is

pre-set at the level α(I) in the Lagrangian function L in (2.34), this function separates into two

parts, one involving only u and the other involving only y, as follows:

N∑
n=1

βn [G(xn,xn+1, n)− α(I)C(pn, ẽn(un,νn))] (2.37)

and

Z(y) + α(I)[I − py · y] . (2.38)

8Applied to the problem at hand, the envelope theorem [43, Chap. 1, Thm. 1.F.1] guarantees that:

dW (u(I),y(I))/dI = dL(u(I),y(I), α(I), I)/dI = ∂L(u(I),y(I), α(I), I)/∂I = α(I)

where d denotes total di�erentiation and ∂ denotes partial di�erentiation.
9In the economics literature, in which consumer bene�ts are assumed to be measured by �utility functions,"

it is standard to refer to α as a marginal utility of income measure.
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The optimal setting of α(I) in (2.37) and (2.38) guarantees that R's income I is optimally split

between expenditures on electric energy for A/C and expenditures on the consumption goods

y. Consequently, the two parts can be separately treated as individual optimization problems.

In particular, the maximization of (2.37) with respect to u, the approach taken in Section

II, results in the satisfaction of the KKT necessary �rst-order conditions for the choice of u

corresponding to the more comprehensive budget-constrained multi-good bene�t maximization

problem handled in this appendix that involves a simultaneous choice of both u and y. Thus,

by appropriate trial-and-error experimentation, resident R could arrive at a setting for the

comfort/cost trade-o� factor α in (2.7) that approximately achieves his optimal A/C energy

usage solution for this more comprehensive problem.
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CHAPTER 3. EFFECTS OF PRICE-RESPONSIVE RESIDENTIAL

DEMAND ON RETAIL AND WHOLESALE POWER MARKET

OPERATIONS

A paper published in the

Proceedings of the IEEE Power and Energy Society General Meeting,

San Diego, CA, July 22-26, 2012

Auswin George Thomas, Chengrui Cai, Dionysios C. Aliprantis, and Leigh Tesfatsion

Abstract

This paper describes a computational platform for studying the e�ects of price-responsive

residential demand for air-conditioning (A/C) on integrated retail and wholesale power mar-

ket operations. The physical operations of the A/C system are represented by means of the

physics-based equivalent thermal parameter model. Residential A/C energy usage levels are

determined by means of a stochastic dynamic-programming optimization in which the daily

comfort attained by the resident is optimally traded o� against his daily energy costs, condi-

tional on retail energy prices, environmental conditions, and A/C operational constraints. An

example is provided to illustrate the dynamic feedback loop connecting residential A/C load,

the energy prices determined at wholesale conditional on A/C load, and the retail energy prices

o�ered to residential A/C consumers by wholesale energy buyers.

3.1 Introduction

Traditionally in the United States the generation, transmission, and distribution of electric

power was monopolistically controlled by vertically integrated utilities with retail load obli-
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gations serviced under retail rates �xed by state and/or local agencies. As a result of the

restructuring movement over the past �fteen years, however, over half of all generating units

are now operating within ISO/RTO-managed energy regions in which generation is required

to be unbundled from transmission operations. Moreover, under recent e�orts to incorporate

smart-grid features, the power industry is increasingly experimenting with means for permitting

more active participation by retail consumers in power industry operations.

One advance along these lines has been the development of advanced metering infrastructure

whose future implementations might be able to report dynamic price signals to retail consumers

re�ecting actual energy costs. These costs in general will be related to the charges paid at

wholesale by load-serving entities (LSEs). This sets up an interesting feedback dynamic between

retail and wholesale levels of operation: Retail loads enter into the determination of wholesale

energy prices, which in turn a�ect the retail prices set by LSEs through retail dynamic-price

contracts.

This paper describes a computational platform to investigate the e�ects on retail and whole-

sale power system operations when the air-conditioning (A/C) systems of household residents

are responsive to price. Residential A/C constitutes a substantial component of load, especially

during hot days. A critical requirement for this analysis is the representation of the load pro�les

arising at the wholesale level from price-responsive retail demands.

Several attempts have been made in the past to achieve a high-�delity modeling of load.

For example, Kosterev et al. [44] discuss the latest advances in load modeling for the study of

power systems in the Western Electricity Coordinating Council (WECC) region. Also, Schneider

and Fuller [45] provide a detailed discussion of end-use load modeling for distribution analysis.

In particular, note that loads with thermal cycles can utilize thermal storage to shift loads

to periods with lower prices. Heating, Ventilation, and Air-Conditioning (HVAC) systems

constitute a major portion of the load having thermal cycles. The power consumption of an

HVAC system is directly dependent on its set-point. Hence, a simple logic such as increasing

(decreasing) the set-point of an HVAC system in the cooling mode during high (low) prices can

be used to achieve a price-responsive HVAC controller. Schneider et al. [46] use the set-point

adjustment method to study the e�ects of price-sensitive HVAC demand on the operations of a



www.manaraa.com

34

distribution feeder, where retail prices are exogenous values set by the modelers. Zhou et al. [47]

extend these studies by using real-time price realizations to test the e�ects of price-sensitive

HVAC demand, whereas Fuller et al. [48] use a price realization from a double-auction capacity

management market.

Although the simple set-point adjustment method considered in these earlier studies permits

the straightforward derivation of a price-sensitive load pro�le across residents, it does not take

into account in any carefully considered manner the preferred comfort-cost trade-o�s of each

resident. Moreover, the dynamic circular �ow connecting retail loads, wholesale energy prices,

and retail energy prices is not fully modeled.

Building on prior work by the authors and their collaborators [49], this study utilizes a

computational model of a household with an intelligent A/C system that responds not only to

price signals but also to the household resident's preferred comfort-cost tradeo�s. The physical

operations of the A/C system are represented by means of the physics-based Equivalent Ther-

mal Parameter (ETP) model [34, 35]. The resident's A/C energy usages are then determined

by means of a stochastic dynamic-programming optimization in which the daily comfort at-

tained by the resident is optimally traded o� against his daily energy costs. This optimization

is conditional on resident attributes (e.g., preferences), structural attributes (e.g., house insu-

lation), environmental attributes (e.g., outside temperature), A/C operational attributes, and

retail energy prices.

Given this formulation for a single household, a collection of households is then computa-

tionally modeled, each with an intelligent A/C system but with di�ering residential preferences

and structural attributes. The price-sensitive retail loads arising from this diverse collection of

households a�ect the determination of wholesale energy prices and hence the costs paid by LSEs

for their wholesale energy purchases. These LSE costs in turn a�ect the retail energy prices

that the LSEs charge their retail household customers. The overall e�ects of this feedback loop

on system performance are then studied by means of controlled computational experiments.

The remainder of this paper is organized as follows. Section 3.2 describes the computational

platform. Section 3.3 presents a �ve-bus test case, and Section 3.4 explains the methodology

used to represent aggregate retail load at any load bus by means of distribution feeder data.



www.manaraa.com

35

The general simulation methodology used to implement an integrated modeling of retail and

wholesale power system operations with price-responsive A/C residential demands is presented

in Section 3.5 and illustrated for the �ve bus test case in Section 3.6. Concluding remarks are

given in Section 3.7.

3.2 Integrated Retail and Wholesale Test Bed

This study makes use of an agent-based platform to model retail and wholesale power

markets operating over transmission and distribution networks. This platform, referred to as

the Integrated Retail and Wholesale (IRW) Power System Test Bed [50], makes use of an

extended version1 of AMES [51] to simulate a wholesale power market adhering to standard

market practices, and GridLAB-D to model end-use loads.

This extended version of AMES (Agent-based M odeling of E lectrical Systems) is a modular

agent-based computational platform for the study of wholesale power systems that has been

developed in Java by a group of researchers at Iowa State University. It is based on the

actual design of U.S. restructured wholesale power markets adhering to standards set by the

U.S. Federal Energy Regulatory Commission. The agents in AMES include an Independent

System Operator (ISO), Generating Companies (GenCos), and Load Serving Entities (LSEs).

The GenCos and the LSEs participate in a two-settlement system consisting of a day-ahead and

a real-time market operated and settled by the ISO. Transmission grid congestion is managed

by Locational Marginal Prices (LMPs).

GridLAB-D [52] is a modular agent-based energy distribution platform developed by DOE

researchers at Paci�c Northwest National Laboratory (PNNL) that provides detailed models

of loads arising from residential, industrial and commercial retail consumers with a variety of

appliances and equipment. The MySQL database server is used to facilitate data storage for

analysis and data transfer between the various applications. As will be clari�ed in later sections,

GridLAB-D is used in this study to generate the non-price-responsive load pro�les for modeled

1The released AMES version (V2.05) does not consider discrepancies between cleared loads in the day-ahead
market and actual real-time loads. The extended version of AMES has a fully operating two-settlement system
(day-ahead and real-time markets operating in tandem) that prices such load discrepancies at real-time market
prices, as is standard practice in US restructured electric energy regions.
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households.

3.3 Five-Bus Test Case

For concrete illustration, consider a 5-bus test case with �ve GenCos, three LSEs, and a

high-voltage transmission grid consisting of six lines, as shown in Fig. 3.1.2 The power �ow

limit (250 MW) on the line between buses 1 and 2 typically results in congestion occurring on

this line throughout the day.

As explained more carefully in Section 3.4, the demand at bus 4 (where LSE 3 is located) is

extracted from a realistic representation of a distribution system using a GridLAB-D distribu-

tion feeder. Demand at all other load buses is modeled by means of the exogenously speci�ed

load pro�les shown in Fig. 3.2(c), which have a coincident peak observed at hour 18.

The peak power of the load at buses 2 and 3 is on the order of several hundred MW. On the

other hand, the power rating for the distribution feeders modeled in GridLAB-D ranges from

948 KVA to 17 MVA depending on the type of load area (e.g., rural, suburban, heavy urban)

and the composition of the load (residential, agricultural, and industrial)[53]. To obtain a load

at bus 4 of approximately the same magnitude, the GridLAB-D loads are simply scaled by an

appropriate factor.

The marginal cost function for GenCo i is given by

dC(PGi)

dPGi
= ai + 2biPGi, Cap

L
i ≤PGi≤CapUi (3.1)

for i = 1, 2, . . . , 5. The speci�c parameter values used in this study for the GenCos' marginal

cost functions and their lower/upper generation capacity limits are listed in Table 3.1.

3.4 Load aggregation

A �heavy urban� distribution feeder is selected as the distribution feeder from GridLAB-D

to model aggregate load at bus 4 of the 5-bus test case. This distribution feeder, labeled as

R1-12.47-4 in the taxonomy feeder model [54], represents a heavily populated suburban area

2Apart from the modeling of price-responsive load for LSE 3, explained below, complete input data for the
5-bus test case used in this study are provided in the input data �le for the 5-bus test case (with 100% �xed
loads) included in the data directory of the AMES(V2.05) download package [51].
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Figure 3.1 Power grid for the 5-bus test case.

Table 3.1 Parameter values for the GenCos' marginal cost functions and lower and upper

generation capacity limits.

a b CapL CapU

GenCo $/(MW) $/(MW2) MW MW

1 14 0.005 0 110

2 15 0.006 0 100

3 23 0.010 0 520

4 30 0.012 0 200

5 10 0.007 0 600

mainly composed of single-family houses and heavy commercial loads. There are 38 residential

and 12 commercial transformers installed in this feeder, and the peak load is 5.3 MW.

The feeder contains hundreds of houses with detailed end-use loads, such as traditional A/C

systems, lights, and various types of appliances. For the purposes of this study, the traditional

A/C systems are replaced with intelligently controlled A/C systems as modeled in [49]. The

feeder load is thus divided into two parts: non price-responsive load obtained by simulating the

feeder with all A/C systems in all households turned o�; and the intelligently controlled A/C

load, which is calculated separately. The non price-responsive load can be simulated o�-line in
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Figure 3.2 a) Non-price-responsive load in the distribution feeder; b) Intelligent A/C load in

the distribution feeder; c) Daily load pro�les for the LSEs, averaged by hour.

GridLAB-D for the duration of the simulation. This eliminates the need to run GridLAB-D in

tandem with AMES. For simplicity, the same load pro�le is used for each day of the simulation,

as shown in Fig. 3.2(a). This is scaled up to 220 MW peak in order to match the power rating

of other buses in AMES.

The distribution feeder comprises 652 households, and a real power system may feed tens

of thousands of households in each bus. If the distinct structural attributes (e.g., insulation

levels and size dimensions) of each household were to be modeled, the simulation would become

computationally intractable. Consequently, the households are divided into ten groups (of 65
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households), where each house within a particular group has identical structural attributes.

The thermal dynamics of each house are modeled using the ETP model [34, 35]. More

precisely, the ETP model supposes that the dynamics of the inside air temperature T a and

the inside mass temperature Tm at time t are de�ned by a system of two �rst-order linear

di�erential equations:

dT a

dt
=

1

Ca

[
(T o − T a)Ua + (Tm − T a)Um + Q̇+ Q̇a

]
(3.2)

dTm

dt
=

1

Cm

[
(T a − Tm)Um + Q̇m

]
, (3.3)

where

Q̇a = f(Q̇s, Q̇i) (3.4)

Q̇m = g(Q̇s, Q̇i) . (3.5)

In these equations, Ca is the heat capacity (BTU/°F) of the internal air mass, Cm is the heat

capacity (BTU/°F) of the internal solid mass, Ua is the thermal conductance (BTU/h/°F)

between internal and external air mass de�ning the thermal envelope of the house and Um is

the thermal conductance (BTU/h/°F) between the internal air mass and the solid mass. T o is

the outside temperature (°F). Q̇s is the heat �ow rate (BTU/h) from the solar radiation, and

Q̇i is the heat �ow rate (BTU/h) from internal appliances and occupants.

The term Q̇ that appears in (3.2) is the heat �ow rate (BTU/h) from the A/C system to the

internal air mass. It is dependent on the A/C rating (BTU/h) and the latent cooling load (i.e.,

the unwanted moisture that needs to be removed) which depends on the relative humidity. The

overall electricity power consumption depends on Q̇ and the coe�cient of performance COP

(unit-free) of the A/C. The structural attributes of the ten groups of households along with

their operational attributes are listed in Table 3.2.

The 65 household residents within each particular group are then allowed to have di�erent

A/C comfort-cost trade-o� preferences as captured by a �marginal utility of income" parameter

α [49] varying over eight di�erent possible settings. For simplicity, the residents' temperature

�bliss points� are assumed equal. In total, then, the distribution feeder includes 10 × 8 = 80
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Table 3.2 Structural and operational attributes of the ten groups of households

Group Ca Cm Ua Um COP A/C Rating

1 600 4791 180 6167 3.4 30000

2 1283 10348 432 10473 3.1 72000

3 1477 8745 517 11592 3.4 78000

4 414 2724 235 4812 2.5 30000

5 982 5398 439 8663 3.0 72000

6 1113 8542 506 9465 3.3 78000

7 1036 8745 601 8997 2.7 84000

8 710 5046 497 6921 2.7 66000

9 419 2267 542 6617 2.3 78000

10 1236 6662 924 10089 2.7 114000

distinct household types di�ering by structural and/or preference parameter settings. This

approach results in a tractable modeling for diverse price-sensitive A/C residential demands.

Fig. 3.2(b) depicts the aggregated intelligent A/C load of the distribution feeder for an ar-

bitrary day, conditional on environmental conditions and on retail price, shown in Figs. 3.3

and 3.4, respectively. Day-ahead forecasts of the environmental conditions are used for schedul-

ing, while the real-time conditions are used to generate the actual load of the intelligent A/C

system. The decrease in the intelligent A/C load at hour 18 (see Fig. 3.2(b)) is due to the

peak retail price observed at that hour (based on the demand bids submitted by the LSEs the

previous day), which is shown in Fig. 3.4. The peak power from the intelligent A/C loads is

scaled up to 50 MW. This power level for the price-responsive demand constitutes around 20%

of the total feeder load. The peak load of the distribution feeder is around 5 MW, which is

less than the rating of the feeder (5.3 MW). Fig. 3.2(c) depicts the total aggregated load at the

wholesale level at bus 4 (where LSE 3 is located), averaged over an hour in accordance with

standard market practices.
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Figure 3.3 Variation of environmental parameters for day-ahead scheduling and real-time sim-

ulation.

3.5 Simulation Methodology

The logical �ow of a simulation run is depicted in Fig. 3.5. Each simulation run can be

decomposed into two parts, o�-line and on-line. The o�-line part involves initial con�guring

for the distribution feeder(s) and for AMES.3 The on-line part schematically depicts the dy-

namic operation of the AMES two-settlement system (parallel day-ahead and real-time market

3Although in this study the load at only one AMES bus is extracted from the retail power system, the
simulation methodology presented in this section assumes a more general case in which multiple AMES buses
are potentially extended with loads extracted from retail power systems.
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Figure 3.4 Retail price variation.

clearing).4

In the o�-line part, the distribution feeder is �rst selected, and then the structural house

parameters required for implementation of the ETP model are then extracted. Next, to obtain

a daily non price-responsive load pro�le at each feeder-extended AMES bus, a simulation is

performed on each feeder with all conventional A/C systems turned o� for all houses.

As an additional o�-line step, AMES has to be initialized on the initial simulation day 1

with �cleared� LSE demand bids for day 2 (i.e., an amount of energy scheduled to be purchased

by each LSE for each hour of day 2), together with 24 hourly energy prices (LMPs) for day 2.

These LMPs are interpreted as the (forward) market clearing price solutions determined in

the day-ahead market on day 1 (along with cleared energy bid/o�er solutions) for each hour

of the following day. These LMPs also determine the costs paid by LSEs on day 1 for their

cleared demand bids for day 2. The 24 hourly retail energy prices that the LSEs charge to

their residential customers during day 2 are determined as a function of these day-1 costs. For

example, if an LSE on day 1 pays p $/kWh for its cleared demand bid for noon on day 2, it

might set its retail energy price for noon on day 2 equal to p plus some mark-up amount m to

cover billing and other services.

In the on-line part, a Data Management Program (DMP) retrieves from AMES the 24

hourly retail energy prices determined for day 2, using an SQL database server, and passes

4A two-settlement system design for wholesale power system operations has now been adopted in each of the
seven U.S. ISO/RTO-managed energy regions: namely, CAISO, ERCOT, ISO-NE, MISO, NYISO, PJM, and
SPP.
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these retail energy prices to the intelligent A/C system for each house. Each of these intelligent

A/C systems then calculates the actual A/C loads for day 2 given these retail energy prices,

conditional on its own particular house and resident parameters, home appliance schedule, and

the environmental conditions throughout the day.

The DMP then superimposes the total A/C load at each feeder-extended bus with the total

non price-responsive load at each feeder-extended bus to form an actual hourly total load (for

simplicity, the real-time market is run on an hourly basis in this study) for day 2. These loads

are then appropriately scaled up to form the aggregate hourly total load for day 2 at each

feeder-extended bus, and passed back to AMES via the SQL database server.

Once AMES receives the aggregate hourly total load for day 2 at each feeder-extended bus

along with the loads at all other buses, it can run and clear the real-time market for day 2. This

results in real-time LMPs that are used to price any discrepancies between the LSE demand

bids for day 2 (contracted in the day-ahead market on day 1) and the realized loads arising

from actual household energy usage on day 2.

In parallel with these real-time market operations on day 2, the pro�t-seeking AMES LSEs

submit demand bids into the AMES day-ahead market on the morning of day 2 based on

forecasted retail loads for day 3, taking into account the net earnings they obtained from both

day-ahead and real-time settlements as a result of their past demand bids.5 The AMES ISO

then clears the day-ahead market on day 2, resulting in 24 hourly energy prices (LMPs) and

24 hourly energy dispatch levels scheduled for the next day 3. These LMPs determine the

costs paid by LSEs on day 2 for their cleared hourly energy demand bids for day 3. The 24

hourly retail energy prices that the LSEs charge to their residential customers during day 3 are

determined as a function of these day-2 costs.

This sequence of steps is then repeated until a user-speci�ed terminal day.

5AMES permits any decision-making agent to have reinforcement learning capabilities. In general, the pro�t-
seeking AMES LSEs have two learning tasks: namely, to update their daily load forecasts, and to update their
daily demand bids based on all relevant past observed data and possibly, also, on strategic trading considerations.
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3.6 Illustrative Example

In this section the 5-bus test case described in Section 3.3 is used to illustrate the simulation

methodology outlined in Section 3.5. Recall that LSEs 1 and 2 located at buses 2 and 3 service

�xed load pro�les each day. In contrast, LSE 3 at bus 4 services the energy requirements of

retail customers whose energy usages are a mixture of non-price-responsive load and intelligent

load arising from smart A/C systems.

The 5-bus test case simulation begins on the morning of day 1 with the submission by LSE 3

at bus 4 of an initial demand bid to the ISO for use in the day-ahead market for day 2. This

initial demand bid consists of a forecasted 24-hour load pro�le similar in shape to the 24-hour

load pro�les submitted as demand bids to the ISO on the morning of day 1 by LSE 1 and LSE 2;

see Fig. 3.2(c). Also on the morning of day 1, the �ve GenCos submit supply o�ers6 to the ISO

for use in the day-ahead market on day 2 that consist of their true marginal cost functions and

their true capacity limits; see Table 3.1.

The day-ahead market on day 1 is then cleared by the ISO during the afternoon of day 1

using a standard DC optimal power �ow formulation, and the resulting hourly day-ahead market

LMPs ($/MWh) and dispatch levels (MW) are posted in the evening of day 1. The LSE 3

passes the day-ahead LMPs for bus 4 to its retail customers, ampli�ed by a mark-up factor m

= $50/MWh. The actual hourly loads at bus 4 on day 2 are then determined as explained in

Section 3.5.

A new day-ahead market opens on the morning of day 2. Since actual load data have not

yet been observed, the demand bids submitted by all three LSEs for this day-ahead market on

day 2 are unchanged from day 1. Day-ahead market activities for day 2 then proceed as for

day 1. Actual hourly loads are also now realized in the real-time market on day 2.

By the morning of day 3, however, LSE 3 has access to the realized load data for day 2

and can use these data in an attempt to improve its demand bid (load pro�le forecast) for

day 3. For this illustrative example, the following simple forecast methodology is adopted for

6To simplify the illustration, the demand bids (load pro�les) submitted by LSE 1 and LSE 2 on day 1, and
the supply o�ers submitted by the �ve GenCos on day 1, are repeated as their daily demand bids and supply
o�ers throughout the simulation.
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Table 3.3 Simulation results for bus 4 at the peak-load hour 18

LoadDA LoadRT ∆Load LMPDA LMPRT ∆LMP Net Earnings

Day (MW) (MW) (MW) ($/MWh) ($/MWh) ($/MWh) ($)

1 320.44 N/A N/A 32.61 N/A N/A N/A

2 320.44 237.77 82.67 32.61 30.70 1.91 11730.30

3 237.77 234.06 86.38 30.70 30.61 2.00 11530.42

4 234.06 256.01 -18.24 30.61 31.12 -0.42 12793.03

5 256.01 280.90 -46.84 31.12 31.70 -1.08 13994.32

6 280.90 280.47 -24.45 31.70 31.69 -0.57 14009.48

7 280.47 271.07 9.83 31.69 31.47 0.23 13551.44

LSE 3: namely, starting on day 3, the load pro�le forecast that LSE 3 submits as its demand

bid for the day-ahead market is the actual load pro�le observed for its retail customers on the

previous day. Thus, LSE 3 submits a load pro�le each day that consists of hourly quantities

with no explicit dependence on price or environmental conditions; yet these load pro�les in

fact arise in part from intelligent A/C systems responsive to both price and environmental

conditions, hence they vary systematically over time in response to changes in these conditions.

On each subsequent simulated day, the LSEs, GenCos, and ISO then proceed through the same

progression of activities as on day 3.

Let the demand bid (forecasted load) submitted by LSE 3 in the day-ahead market on day

D-1 for bus 4 at hour H on day D be denoted by LoadDAH,D−1, and let the actual aggregate load

realized in the real-time market for bus 4 at hour H on day D be denoted by LoadRTH,D. Similarly,

let the day-ahead LMP determined on day D-1 for bus 4 at hour H on day D be denoted by

LMPDAH,D−1, and let the real-time LMP determined on day D for bus 4 at hour H on day D be

denoted by LMPRTH,D. The load forecast error for bus 4 at hour H on day D is then calculated

as

∆LoadH,D = LoadDAH,D−1 − LoadRTH,D . (3.6)

Similarly, the price deviation for bus 4 at hour H on day D is calculated as

∆LMPH,D = LMPDAH,D−1 − LMPRTH,D . (3.7)
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Key results for each of the �rst seven simulated days are reported in Table 3.3 for bus 4

at the peak-load hour 18. For clarity, the subtracted terms used to calculate the load forecast

errors (3.6) and price deviations (3.7) are highlighted using the same color. As explained above,

the LSE demand bids and GenCo supply o�ers for day 1 are the same as for day 2, hence the

day-ahead LMPs for day 1 are the same as for day 2.

Ignoring the �rst two days used to initialize the simulation, the price deviations (3.7) are

plotted in Fig. 3.6(a) for D varying from 3 to 7. Since all parameter values remain constant

throughout the simulation, along with the daily demand bids of LSEs 1 and 2 and the daily

supply o�ers of the �ve GenCos, these price deviations are entirely due to LSE 3's load fore-

cast errors. These load forecast errors, in turn, arise due to randomly varying environmental

conditions.

The net earnings of LSE 3 at bus 4 for any hour H of any simulated day D = 2,...,7 are

determined as follows:

NetEarnings(H,D) = [m+ LMPDAH,D−1] · LoadRTH,D − LMPDAH,D−1 · LoadDAH,D−1

+ LMPRTH,D · [LoadDAH,D−1 − LoadRTH,D] , (3.8)

where m denotes the mark-up added by LSE 3 to the day-ahead LMP. Collecting terms, (3.8)

can equivalently be expressed as

NetEarnings(H,D) = m · LoadRTH,D + [LMPDAH,D−1 − LMPRTH,D] · [LoadRTH,D − LoadDAH,D−1] , (3.9)

or, in more compact form, as

NetEarnings(H,D) = m · LoadRTH,D −∆LMPH,D ·∆LoadH,D . (3.10)

All else equal, LMPRTH,D will tend to move in the same direction as LoadRTH,D. This follows

because the real-time aggregate supply curve for hour H of day D is upward sloping, and an

increase in LoadRTH,D results in a rightward shift in the (vertical) real-time aggregate demand

curve for hour H of day D. The second term on the right-hand-side of the equality in (3.9)

will thus tend to be negative unless LSE 3's day-ahead hourly load forecast, LoadDAH,D−1, is

a perfect forecast of its real-time hourly aggregate load, LoadRTH,D. Indeed, this is a deliberate
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design feature of the two-settlement system to encourage accurate LSE load forecasting. Notice,

however, that LSE 3 can still earn a positive pro�t if it is able to set the mark-up m su�ciently

high.

The aggregate load pro�le at bus 4 for each of the simulated days 2 through 7 is shown

in Fig. 3.6(b). LSE 3's corresponding hourly net earnings (3.10) are plotted in Fig. 3.6(c).

Comparing Fig. 3.6(b) with Fig. 3.6(c), it is seen that LSE 3's hourly net earnings are strongly

positively correlated with hourly real-time aggregate loads. The explanation for this correlation

is that, for the simulation at hand, the load forecast errors (3.6) and price deviations (3.7) are

very small compared to LSE 3's mark-up earnings m · [LoadRTH,D] in (3.10). Hence, LSE 3's net

earnings for each hour of day D are approximately determined by its mark-up earnings for this

hour.

3.7 Conclusion

Given the increased penetration of price-responsive demand envisioned under smart grid

initiatives, it is critically important to investigate the e�ects of this penetration on system

operations at both retail and wholesale levels. Price-responsive retail energy demand a�ects

wholesale load and hence wholesale energy prices, which in turn a�ect the energy prices set by

wholesale energy buyers for their retail energy customers.

The primary purpose of the present study is to demonstrate, through concrete illustration,

that computational platforms can be developed that permit the systematic study of integrated

retail and wholesale power system operations with price-responsive demand. The platform

reported in this study is still in a preliminary stage of development, and many possible im-

provements are under investigation.

For example, one major improvement would be to decrease the computation time needed to

simulate the retail-wholesale feedbacks arising from price-responsive retail demand. A resort to

parallel computing or supercomputing could speed up the process. The aggregation of the load is

also at a very crude modeling stage. The simultaneous simulation of multiple distribution feeders

would eliminate the need to scale up the retail load and would permit temporal and spatial load

diversity to be captured with greater empirical verisimilitude. In addition, appropriate load
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forecasting methods for LSEs servicing price-responsive retail demand need to be investigated.

The ability of LSEs to use mark-ups over wholesale energy prices also needs to be more carefully

examined. Higher mark-ups could lead to higher net earnings in the short-run, but could also

ultimately result in lower net earnings if retail customers are able to vote with their feet to

patronize lower-priced rival retailers. These and other important issues are subjects of ongoing

and future research.
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CHAPTER 4. GENERAL CONCLUSION

The main motivation of this thesis is to demonstrate the use of residential air-conditioning

systems to provide comfort and cost trade-o�s to the resident and also provide indirect load

control to the system. The peak load reduction achieved in the system results in the use of

less expensive generation. Apart from the reduction of the peak load, the indirect load control

methodology has other advantages. It facilitates the contribution of retail consumers to provide

services to the power system. The active interaction of consumers (and thereby retail load) is

one of the key aspects of the smart grid. It also demands the utilities to improve their e�ciency

in managing their customers as increased consumer participation would result in competition

between di�erent utilities. The utilities will have to perform to their best to attract retail

consumers which would result in the overall reduction of the price signal and also improve the

energy e�ciency in the power system.

4.1 Contributions of the Thesis

One of the speci�c contributions of this thesis is the development of the intelligent A/C

controller for residential households to provide comfort and cost trade-o�s to the resident and

to achieve indirect load control in the system. The thermal comfort of the resident is taken into

account carefully and optimal intertemporal trade-o�s between itself and the A/C energy costs

for the resident is achieved. It is to be mentioned that these optimal trade-o�s are conditional

on resident's behavioral attirbutes, structural attributes of the house, retail energy price and

environmental conditions.

The intelligent A/C controller can form the basis to study price-responsive demand in the

distribution system. Several implementations of the A/C controller in a large distribution feeder
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could be used by the utilities to study the behaviour of the consumers in response to various

control signals whose preferences have been captured as accurately as possible from the electrical

system's point of view.

Another contribution of the thesis is the development of the software framework necessary

to integrate the retail and the wholesale system. This computational framework includes the

price-responsive residential A/C demand that a�ects the price in the wholesale power market.

The feedback loop is established as a result of the framework. Herein, the wholesale price is

fed to the downstream consumers with the intelligent A/C controller. This generates a price-

responsive demand that is fed back to the wholesale system that results in the generation of a

new price signal corresponding to this load. This process continues in the form of a staggered

feedback loop and preliminary results are reported based on this complex interactive feedback

loop.

4.2 Possible Directions of Future Research

This thesis is just a preliminary investigation of the wide range of possibilites that exist.

The following items are proposed as possible future research directions.

� Extension of the indirect load control methodology:

As mentioned in Chapter 1, demand side management (DSM) has two types of load

control: direct and indirect load control. Direct load control is equally bene�cial to the

system in several other aspects. Regulation services and load following require quick

response from the load which is possible through direct load control. In indirect control,

the consumers may or may not a�ect the retail load to a large extent depending on their

preferences. Hence, a top-down approach which is achieved by direct load control could

be analyzed. The e�ects of the retail load arising from direct load control on the wholesale

and retail system will also have to be studied.

� Extension of the algorithm to other appliances:

The A/C system is not the only system that has the potential to engage in active re-

sponse. There are numerous appliances in a household such as dishwasher, refrigerator,
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clotheswasher and water heater that also have the capability to be intelligent. Hence, the

intelligent control algorithm can be implemented in other devices and a home management

system can be formed.

� Improve the e�ciency of the computational framework:

The computational time needed to test the feedback e�ects arising from price-responsive

retail demand has to be reduced as much as possible to run interesting experiments. A

resort to parallel computing or supercomputing could speed up the process. This aspect

forms an interesting future direction that gives much more ability to simulate the system

at a more accurate level.

� Improvement in the feedback loop:

The feedback loop is still at the preliminary level. Detailed representations of the dis-

tribution feeders are necessary to achieve realism in the results. Especially, multiple

distribution feeders are important in aggregating the retail load. The utilities have to be

careful in forecasting the load in the wholesale system as this forecast essentially deter-

mines how much the actual load deviates from the forecast. As the deviation between

the forecast and the actual load usually results in a penalty, it gives the utilities great

incentives to accurately forecast the retail load.
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